Stein open subsets with analytic complements in compact complex spaces
Let Y be an open subset of a reduced compact complex space X such that X - Y is the support of an effective divisor D. If X is a surface and D is an effective Weil divisor, we give sufficient conditions so that Y is Stein. If X is of pure dimension d ≥ 1 and X - Y is the support of an effective Cartier divisor D, we show that Y is Stein if Y contains no compact curves, for all i > 0, and for every point x₀ ∈ X-Y there is an n ∈ ℕ such that is empty or has dimension 0, where is the map from...