On n-circled -domains of holomorphy
We present various characterizations of n-circled domains of holomorphy with respect to some subspaces of .
We present various characterizations of n-circled domains of holomorphy with respect to some subspaces of .
To a pair of a Lie group and an open elliptic convex cone in its Lie algebra one associates a complex semigroup which permits an action of by biholomorphic mappings. In the case where is a vector space is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain is Stein is and only if it is of the form , with convex, that each holomorphic function on extends to the smallest biinvariant Stein domain containing ,...
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant...
We give a simple algebraic condition on the leading homogeneous term of a polynomial mapping from ℝ² into ℝ² which is equivalent to the fact that the complexification of this mapping can be extended to a polynomial endomorphism of ℂℙ². We also prove that this extension acts on ℂℙ²∖ℂ² as a quotient of finite Blaschke products.
This paper contains a new approach to a proof of the Hartogs extension theorem and its generalisation. The proof bases only on one complex variable methods.
If E is a closed subset of locally finite Hausdorff (2n-2)-measure on an n-dimensional complex manifold Ω and all the points of E are nonremovable for a meromorphic mapping of Ω E into a compact Kähler manifold, then E is a pure (n-1)-dimensional complex analytic subset of Ω.