Displaying 201 – 220 of 347

Showing per page

On n-circled -domains of holomorphy

Marek Jarnicki, Peter Pflug (1997)

Annales Polonici Mathematici

We present various characterizations of n-circled domains of holomorphy G n with respect to some subspaces of ( G ) .

On the complex and convex geometry of Ol'shanskii semigroups

Karl-Hermann Neeb (1998)

Annales de l'institut Fourier

To a pair of a Lie group G and an open elliptic convex cone W in its Lie algebra one associates a complex semigroup S = G Exp ( i W ) which permits an action of G × G by biholomorphic mappings. In the case where W is a vector space S is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain D S is Stein is and only if it is of the form G Exp ( D h ) , with D h i W convex, that each holomorphic function on D extends to the smallest biinvariant Stein domain containing D ,...

On the complex geometry of invariant domains in complexified symmetric spaces

Karl-Hermann Neeb (1999)

Annales de l'institut Fourier

Let M = G / H be a real symmetric space and 𝔤 = 𝔥 + 𝔮 the corresponding decomposition of the Lie algebra. To each open H -invariant domain D 𝔮 i 𝔮 consisting of real ad-diagonalizable elements, we associate a complex manifold Ξ ( D 𝔮 ) which is a curved analog of a tube domain with base D 𝔮 , and we have a natural action of G by holomorphic mappings. We show that Ξ ( D 𝔮 ) is a Stein manifold if and only if D 𝔮 is convex, that the envelope of holomorphy is schlicht and that G -invariant plurisubharmonic functions correspond to convex H -invariant...

On the complexification of real-analytic polynomial mappings of ℝ²

Ewa Ligocka (2006)

Annales Polonici Mathematici

We give a simple algebraic condition on the leading homogeneous term of a polynomial mapping from ℝ² into ℝ² which is equivalent to the fact that the complexification of this mapping can be extended to a polynomial endomorphism of ℂℙ². We also prove that this extension acts on ℂℙ²∖ℂ² as a quotient of finite Blaschke products.

On the Hartogs extension theorem

Tomasz Sobieszek (2003)

Annales Polonici Mathematici

This paper contains a new approach to a proof of the Hartogs extension theorem and its generalisation. The proof bases only on one complex variable methods.

On the removable singularities for meromorphic mappings.

Evgeny M. Chirka (1996)

Publicacions Matemàtiques

If E is a closed subset of locally finite Hausdorff (2n-2)-measure on an n-dimensional complex manifold Ω and all the points of E are nonremovable for a meromorphic mapping of Ω E into a compact Kähler manifold, then E is a pure (n-1)-dimensional complex analytic subset of Ω.

Currently displaying 201 – 220 of 347