Geometric regularity versus analytic regularity higher codimensional case
We study germs of holomorphic mappings between general algebraic hypersurfaces. Our main result is the following. If and are two germs of real algebraic hypersurfaces in , , is not Levi-flat and is a germ at of a holomorphic mapping such that and then the so-called reflection function associated to is always holomorphic algebraic. As a consequence, we obtain that if is given in the so-called normal form, the transversal component of is always algebraic. Another corollary of...
Global time estimates of norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.
We study the pluripolar hulls of analytic sets. In particular, we show that hulls of graphs of analytic functions can be multiple sheeted and sheets can be separated by a set of zero dimension.