Propagation of Holomorphic Extendability of CR Functions.
On considère un polynôme , à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégralesdonne des renseignements sur les racines du polynômes de Bernstein de . La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.
We describe a part of the recent developments in the theory of separately holomorphic mappings between complex analytic spaces. Our description focuses on works using the technique of holomorphic discs.
The purpose of this paper is to give a characterization of the relative tangent cone of two analytic curves in with an isolated intersection.
This paper is an outgrowth of a paper by the first author on a generalized Hartogs Lemma. We complete the discussion of the nonlinear ∂̅ problem ∂f/∂z̅ = ψ(z,f(z)). We also simplify the proofs by a different choice of Banach spaces of functions.
On caractérise les ouverts d’homologie d’un produit dénombrable de droites réelles ou complexes.
We show that every closed subset of CN that has finite (2N - 2)-dimensional measure is a removable set for holomorphic functions, and we obtain a related result on the ball.