Bestimmungsflächen für des Randwachstum holomorpher Funktionen auf analytischen Polyedern
For a strongly pseudoconvex domain defined by a real polynomial of degree , we prove that the Lie group can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle of , and that the sum of its Betti numbers is bounded by a certain constant depending only on and . In case is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser...