Loading [MathJax]/extensions/MathZoom.js
Cet article est consacré à la démonstration d’une version presque complexe du théorème de Bloch. Considérons la réunion C de quatre J-droites en position générale dans un plan projectif presque complexe. Nous démontrons que toute suite non normale de J-disques évitant évitant la configuration C admet une sous-suite convergeant, au sens de Hausdorff, vers une partie la réunion des diagonales de C. En particulier, le complémentaire de la configuration C est hyperboliquement plongé dans le paln projectif...
We prove some theorems on uniqueness of meromorphic mappings into complex projective space ℙⁿ(ℂ), which share 2n+3 or 2n+2 hyperplanes with truncated multiplicities.
We give unicity theorems for meromorphic mappings of into ℂPⁿ with Fermat moving hypersurfaces.
In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of into with truncated multiplicities and “few" targets. We also give a theorem of linear degeneration for such maps with truncated multiplicities and moving targets.
In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of Cm into CPn.
Currently displaying 1 –
5 of
5