Fibre cycles of holomorphic maps. I. Local flattening.
Soit un morphisme propre fini et surjectif entre deux variétés analytiques complexes. Nous donnons une caractérisation des fonctions (continues) sur qui sont de la forme où est une fonction sur . Pour cela nous introduisons la notion de fonction de type trace sur une variété analytique complexe. Ces fonctions sont analytiques réelles en dehors d’une hypersurface complexe et admettent des singularités très simples aux points de cette hypersurface.
Dans cet article, on construit tout d’abord un noyau de Cauchy explicite dans la boule unité de dont les valeurs au bord sont égales au noyau de Szegö. Puis, à partir de ce noyau, on construit explicitement les noyaux qui fournissent les solutions de l’équation qui sont orthogonales aux fonctions holomorphes dans les espaces , où , étant la mesure de Lebesgue et un réel . Nous donnons ensuite les principales estimations dedans et au bord que vérifient ces solutions. Dans une deuxième...