Previous Page 2

Displaying 21 – 30 of 30

Showing per page

On vector fields in C3 without a separatrix.

J. Olivares-Vázquez (1992)

Revista Matemática de la Universidad Complutense de Madrid

A family of germs at 0 of holomorphic vector fields in C3 without separatrices is constructed, with the aid of the blown-up foliation F in the blown-up manifold C3. We impose conditions on the multiplicity and the linear part of F at its singular points (i.e., non-semisimplicity and certain nonresonancy), which are sufficient for the original vector field to be separatrix-free.

Optimal destabilizing vectors in some Gauge theoretical moduli problems

Laurent Bruasse (2006)

Annales de l’institut Fourier

We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing 1 -parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal...

Currently displaying 21 – 30 of 30

Previous Page 2