On 2-Dimensional Cousin I-Spaces.
In this paper we obtain bounds on h0(E) where E is a semistable bundle of rank 3 over a smooth irreducible projective curve X of genus g ≥ 2 defined over an algebraically closed field of characteristic 0. These bounds are expressed in terms of the degrees of stability s1(E), s2(E). We show also that in some cases the bounds are best possible. These results extend recent work of J. Cilleruelo and I. Sols for bundles of rank 2.
We study a holomorphic equivariant cohomology built out of the Atiyah algebroid of an equivariant holomorphic vector bundle and prove a related localization formula. This encompasses various residue formulas in complex geometry, in particular we shall show that it contains as special cases Carrell-Liebermann’s and Feng-Ma’s residue formulas, and Baum-Bott’s formula for the zeroes of a meromorphic vector field.
Let C be a smooth curve of genus g. For each positive integer r the birational r-gonality sr(C) of C is the minimal integer t such that there is L ∈ Pict(C) with h0(C,L) = r + 1. Fix an integer r ≥ 3. In this paper we prove the existence of an integer gr such that for every integer g ≥ gr there is a smooth curve C of genus g with sr+1(C)/(r + 1) > sr(C)/r, i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails
We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form . The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as where is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into .