Page 1

Displaying 1 – 3 of 3

Showing per page

Calabi flow on toric varieties with bounded Sobolev constant, I

Hongnian Huang (2016)

Complex Manifolds

Let (X, P) be a toric variety. In this note, we show that the C0-norm of the Calabi flow φ(t) on X is uniformly bounded in [0, T) if the Sobolev constant of φ(t) is uniformly bounded in [0, T). We also show that if (X, P) is uniform K-stable, then the modified Calabi flow converges exponentially fast to an extremal Kähler metric if the Ricci curvature and the Sobolev constant are uniformly bounded. At last, we discuss an extension of our results to a quasi-proper Kähler manifold.

Complex Hyperbolic Surfaces of Abelian Type

Holzapfel, R. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 11G15, 11G18, 14H52, 14J25, 32L07.We call a complex (quasiprojective) surface of hyperbolic type, iff – after removing finitely many points and/or curves – the universal cover is the complex two-dimensional unit ball. We characterize abelian surfaces which have a birational transform of hyperbolic type by the existence of a reduced divisor with only elliptic curve components and maximal singularity rate (equal to 4). We discover a Picard modular surface of...

Currently displaying 1 – 3 of 3

Page 1