Page 1

Displaying 1 – 3 of 3

Showing per page

Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )

Vincent Koziarz, Julien Maubon (2008)

Annales de l’institut Fourier

We study representations of lattices of PU ( m , 1 ) into PU ( n , 1 ) . We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m -space to complex hyperbolic n -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU ( n , 1 ) of non-uniform lattices in PU ( 1 , 1 ) , and more generally of fundamental groups of orientable...

Hermitian curvature flow

Jeffrey Streets, Gang Tian (2011)

Journal of the European Mathematical Society

We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein metrics...

Currently displaying 1 – 3 of 3

Page 1