The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Linear free divisors and the global logarithmic comparison theorem

Michel Granger, David Mond, Alicia Nieto-Reyes, Mathias Schulze (2009)

Annales de l’institut Fourier

A complex hypersurface D in n is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for n at most 4 .By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for D if the complex of global logarithmic differential forms computes the complex cohomology of n D . We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the...

Currently displaying 1 – 2 of 2

Page 1