Commutation properties and Lipschitz estimates for the Bergman and Szegö projections.
We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in are Bergman comlete.
On démontre que les domaines bornés, pseudo-convexes, à frontière lisse, de type fini dans , ayant un groupe d’automorphismes non compact sont biholomorphes à des domaines de la forme , où est un polynôme sousharmonique dont le degré est majoré par le type de la frontière du domaine.