Über die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten.
Le théorème d’unicité classique de Hörmander affirme qu’il y a prolongement unique des solutions d’équations principalement normales à travers les surfaces fortement pseudo-convexes. Le cas des surfaces faiblement pseudo-convexes est envisagé ici avec des hypothèses de transversalité aux points où le terme de pseudo-convexité s’annule (type biprinicipal). Pour ces situations, deux résultats sont donnés : un résultat d’unicité compacte démontré par la technique des inégalités de Carleman, et un résultat...
L’auteur prouve deux théorèmes d’unicité locale du problème de Cauchy pour des opérateurs linéaires de symboles principaux réels. Il se place dans le cas où possède des points critiques réels (), au voisinage desquels il suppose une condition faible de “pseudo-convexité” (au sens d’Hörmander). Il donne alors des conditions sur le symbole sous-principal de l’opérateur qui assurent l’unicité.