Sur le plongement des domaines faiblement pseudoconvexes dans des domaines convexes.
Dans cet article on montre que toute a une décomposition avec pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.
Viene studiata l'equazione per le forme regolari sulla chiusura dell'intersezione di domini pseudoconvessi. Si costruisce un operatore soluzione in forma integrale e sotto ipotesi opportune si ottengono stime della soluzione nelle norme .
In this paper we extend to complex spaces and coherent analytic sheaves some results of Andreotti and Norguet concerning the extension of cohomology classes.
It is proved that the Levi problem for certain locally convex Hausdorff spaces over with a finite dimensional Schauder decomposition (for example for Fréchet or Silva spaces with a Schauder basis) the Levi problem has a solution, i.e. every pseudoconvex domain spread over is a domain of existence of an analytic function. It is also shown that a pseudoconvex domain spread over a Fréchet space or a Silva space with a finite dimensional Schauder decomposition is holomorphically convex and satisfies...