Bethe ansatz for the Ruijsenaars model of -type.
The classical orthogonal polynomials defined on intervals of the real line are related to many important branches of analysis and applied mathematics. Here a method is described to generalise this concept to polynomials defined on higher dimensional spaces using Bi-Axial Monogenic functions. The particular examples considered are Gegenbauer polynomials defined on the interval [-1,1] and the Gegenbauer functions of the second kind which are weighted Cauchy integral transforms over this interval of...
A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of -hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with .
By employing one of the cubic transformations (due to W. N. Bailey (1928)) for the -series, we examine a class of -series. Several closed formulae are established by means of differentiation, integration and contiguous relations. As applications, some remarkable binomial sums are explicitly evaluated, including one proposed recently as an open problem.