Inversion formulas for the Dunkl intertwining operator and its dual on spaces of functions and distributions.
Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators of the q-Riemann-Liouville and...
Les valeurs aux entiers pairs (strictement positifs) de la fonction de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de . En revanche, on sait très peu de choses sur la nature arithmétique des , pour entier. Apéry a démontré en 1978 que est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de sont irrationnels, mais sans pouvoir en exhiber aucun autre que . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...
In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where buildings are studied, Lindlbauer and Voit where buildings are studied, and Sawyer where homogeneous trees are studied (these are buildings).