Displaying 141 – 160 of 314

Showing per page

On q -summation and confluence

Lucia Di Vizio, Changgui Zhang (2009)

Annales de l’institut Fourier

This paper is divided in two parts. In the first part we study a convergent q -analog of the divergent Euler series, with q ( 0 , 1 ) , and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding q -difference equation. In the second part, we work under the assumption q ( 1 , + ) . In this case, at least four different q -Borel sums of a divergent power series solution of an irregular singular...

On q–Analogues of Caputo Derivative and Mittag–Leffler Function

Rajkovic, Predrag, Marinkovic, Sladjana, Stankovic, Miomir (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of integration, we consider the fractional q–derivative of Caputo type. Especially, its applications to q-exponential functions allow us to introduce q–analogues of the Mittag–Leffler function. Vice versa, those functions can be used for defining generalized operators in fractional q–calculus.

On q-asymptotics for q-difference-differential equations with Fuchsian and irregular singularities

Alberto Lastra, Stéphane Malek, Javier Sanz (2012)

Banach Center Publications

This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...

On q-Laplace Transforms of the q-Bessel Functions

Purohit, S., Kalla, S. (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D15, 44A10, 44A20The present paper deals with the evaluation of the q-Laplace transforms of a product of basic analogues of the Bessel functions. As applications, several useful special cases have been deduced.

On solutions of differential equations with ``common zero'' at infinity

Árpád Elbert, Jaromír Vosmanský (1997)

Archivum Mathematicum

The zeros c k ( ν ) of the solution z ( t , ν ) of the differential equation z ' ' + q ( t , ν ) z = 0 are investigated when lim t q ( t , ν ) = 1 , | q ( t , ν ) - 1 | d t < and q ( t , ν ) has some monotonicity properties as t . The notion c κ ( ν ) is introduced also for κ real, too. We are particularly interested in solutions z ( t , ν ) which are “close" to the functions sin t , cos t when t is large. We derive a formula for d c κ ( ν ) / d ν and apply the result to Bessel differential equation, where we introduce new pair of linearly independent solutions replacing the usual pair J ν ( t ) , Y ν ( t ) . We show the concavity of c κ ( ν ) for | ν | 1 2 and also...

Currently displaying 141 – 160 of 314