Sur deux séries nouvelles qui expriment le sinus et le cosinus d'un arc donné
Multiple Dirichlet series of several complex variables are considered. Using the Mellin-Barnes integral formula, we prove the analytic continuation and an upper bound estimate.
MSC 2010: 33B10, 33E20Recently, various generalizations and deformations of the elementary functions were introduced. Since a lot of natural phenomena have both discrete and continual aspects, deformations which are able to express both of them are of particular interest. In this paper, we consider the trigonometry induced by one parameter deformation of the exponential function of two variables eh(x; y) = (1 + hx)y=h (h 2 R n f0g, x 2 C n f¡1=hg, y 2 R). In this manner, we define deformed sine...
We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.