Analogues of Besicovitch-Wiener Theorem for Heisenberg Group.
We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.
We derive the asymptotic spectral distribution of the distance k-graph of N-dimensional hypercube as N → ∞.
The classical orthogonal polynomials defined on intervals of the real line are related to many important branches of analysis and applied mathematics. Here a method is described to generalise this concept to polynomials defined on higher dimensional spaces using Bi-Axial Monogenic functions. The particular examples considered are Gegenbauer polynomials defined on the interval [-1,1] and the Gegenbauer functions of the second kind which are weighted Cauchy integral transforms over this interval of...