Elementary spherical functions on symmetric spaces.
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the ’s satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results...
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function, depends only on and are...
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the 's satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is...
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function, depends only on...
A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold and a real Lie group of holomorphic automorphisms of . The question we study is, for a holomorphic function on , to evaluate the integral of over a -orbit by using the harmonic analysis of . When is an annulus in the complex plane and the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when is...