On two systems of orthogonal polynomials related to the Pollaczek polynomials
Jairo A. Charris, Guillermo Rodriguez-Blanco, Claudia Gómez (1992)
Revista colombiana de matematicas
Zbigniew Sadlok (1983)
Annales Polonici Mathematici
R. K. Raina (1996)
Rendiconti del Seminario Matematico della Università di Padova
Kaori Ota (1994)
Acta Arithmetica
P. García Lázaro, F. Marcellán (1993)
Annales Polonici Mathematici
A new approach to the study of zeros of orthogonal polynomials with respect to an Hermitian and regular linear functional is presented. Some results concerning zeros of kernels are given.
Katy Boussel (1996)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Hans-Jürgen Glaeske (1987)
Aequationes mathematicae
A. Singh (1978)
Publications de l'Institut Mathématique [Elektronische Ressource]
Chaudhry, M.Aslam, Qadir, Asghar (2007)
International Journal of Mathematics and Mathematical Sciences
Mumtaz Ahmad Khan, Mohd Khalid Rafat Khan (2011)
Matematički Vesnik
J. Cigler (1981)
Monatshefte für Mathematik
Francisco Marcellán, Franciszek Szafraniec (1996)
Studia Mathematica
Let S be a degree preserving linear operator of ℝ[X] into itself. The question is if, preserving orthogonality of some orthogonal polynomial sequences, S must necessarily be an operator of composition with some affine function of ℝ. In [2] this problem was considered for S mapping sequences of Laguerre polynomials onto sequences of orthogonal polynomials. Here we improve substantially the theorems of [2] as well as disprove the conjecture proposed there. We also consider the same questions for polynomials...
Hongming Ding, Kenneth I. Gross (1993)
Journal für die reine und angewandte Mathematik
Klimyk, Anatoliy, Patera, Jiri (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Otakar Jaroch (1978)
Aplikace matematiky
Orthoexponential polynomials can be expressed in terms of the Legendre polynomials. The formulae proved in this paper are useful for the computation of the values of orthoexponential polynomials. It is also possible to re-state, for orthoexponential polynomials, some theorems from the theory of classical orthogonal polynomials.
Cruz-Barroso, Ruymán, González-Vera, Pablo (2005)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Acosta, Eva (2006)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
König, Wolfgang (2005)
Probability Surveys [electronic only]
Totik, Vilmos (2005)
Surveys in Approximation Theory (SAT)[electronic only]
Vauchassade de Chaumont, M., Viennot, Gérard (1983)
Séminaire Lotharingien de Combinatoire [electronic only]