Displaying 1121 – 1140 of 1180

Showing per page

Well-poised hypergeometric service for diophantine problems of zeta values

Wadim Zudilin (2003)

Journal de théorie des nombres de Bordeaux

It is explained how the classical concept of well-poised hypergeometric series and integrals becomes crucial in studying arithmetic properties of the values of Riemann’s zeta function. By these well-poised means we obtain: (1) a permutation group for linear forms in 1 and ζ ( 4 ) = π 4 / 90 yielding a conditional upper bound for the irrationality measure of ζ ( 4 ) ; (2) a second-order Apéry-like recursion for ζ ( 4 ) and some low-order recursions for linear forms in odd zeta values; (3) a rich permutation group for a family...

Widom factors for the Hilbert norm

Gökalp Alpan, Alexander Goncharov (2015)

Banach Center Publications

Given a probability measure μ with non-polar compact support K, we define the n-th Widom factor W²ₙ(μ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial and the n-th power of the logarithmic capacity of K. If μ is regular in the Stahl-Totik sense then the sequence ( W ² ( μ ) ) n = 0 has subexponential growth. For measures from the Szegő class on [-1,1] this sequence converges to some proper value. We calculate the corresponding limit for the measure that generates the Jacobi polynomials, analyze...

Zeros of a certain class of Gauss hypergeometric polynomials

Addisalem Abathun, Rikard Bøgvad (2018)

Czechoslovak Mathematical Journal

We prove that as n , the zeros of the polynomial 2 F 1 - n , α n + 1 α n + 2 ; z cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter α and partially proves a conjecture made by the authors in an earlier work.

α-Mellin Transform and One of Its Applications

Nikolova, Yanka (2012)

Mathematica Balkanica New Series

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45We consider a generalization of the classical Mellin transformation, called α-Mellin transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presentation from the paper [5], where we have introduced the definition of the α-Mellin transform and some of its basic properties. Some examples of special cases are provided. Its operational properties as Theorem 1, Theorem 2 (Convolution theorem) and Theorem 3 (α-Mellin transform...

Currently displaying 1121 – 1140 of 1180