Previous Page 2

Displaying 21 – 32 of 32

Showing per page

On q–Analogues of Caputo Derivative and Mittag–Leffler Function

Rajkovic, Predrag, Marinkovic, Sladjana, Stankovic, Miomir (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of integration, we consider the fractional q–derivative of Caputo type. Especially, its applications to q-exponential functions allow us to introduce q–analogues of the Mittag–Leffler function. Vice versa, those functions can be used for defining generalized operators in fractional q–calculus.

On q-asymptotics for q-difference-differential equations with Fuchsian and irregular singularities

Alberto Lastra, Stéphane Malek, Javier Sanz (2012)

Banach Center Publications

This work is devoted to the study of a Cauchy problem for a certain family of q-difference-differential equations having Fuchsian and irregular singularities. For given formal initial conditions, we first prove the existence of a unique formal power series X̂(t,z) solving the problem. Under appropriate conditions, q-Borel and q-Laplace techniques (firstly developed by J.-P. Ramis and C. Zhang) help us in order to construct actual holomorphic solutions of the Cauchy problem whose q-asymptotic expansion...

On the complex geometry of invariant domains in complexified symmetric spaces

Karl-Hermann Neeb (1999)

Annales de l'institut Fourier

Let M = G / H be a real symmetric space and 𝔤 = 𝔥 + 𝔮 the corresponding decomposition of the Lie algebra. To each open H -invariant domain D 𝔮 i 𝔮 consisting of real ad-diagonalizable elements, we associate a complex manifold Ξ ( D 𝔮 ) which is a curved analog of a tube domain with base D 𝔮 , and we have a natural action of G by holomorphic mappings. We show that Ξ ( D 𝔮 ) is a Stein manifold if and only if D 𝔮 is convex, that the envelope of holomorphy is schlicht and that G -invariant plurisubharmonic functions correspond to convex H -invariant...

On the meromorphic solutions of a certain type of nonlinear difference-differential equation

Sujoy Majumder, Lata Mahato (2023)

Mathematica Bohemica

The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation f n ( z ) + P d ( z , f ) = p 1 ( z ) e α 1 ( z ) + p 2 ( z ) e α 2 ( z ) , where P d ( z , f ) is a difference-differential polynomial in f ( z ) of degree d n - 1 with small functions of f ( z ) as its coefficients, p 1 , p 2 are nonzero rational functions and α 1 , α 2 are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.

Currently displaying 21 – 32 of 32

Previous Page 2