Displaying 121 – 140 of 203

Showing per page

On those ordinary differential equations that are solved exactly by the improved Euler method

Hans Jakob Rivertz (2013)

Archivum Mathematicum

As a numerical method for solving ordinary differential equations y ' = f ( x , y ) , the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for f ( x , y ) to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method....

Parallelisms between differential and difference equations

Veronika Chrastinová, Václav Tryhuk (2012)

Mathematica Bohemica

The paper deals with the higher-order ordinary differential equations and the analogous higher-order difference equations and compares the corresponding fundamental concepts. Important dissimilarities appear for the moving frame method.

Polynomial algebra of constants of the Lotka-Volterra system

Jean Moulin Ollagnier, Andrzej Nowicki (1999)

Colloquium Mathematicae

Let k be a field of characteristic zero. We describe the kernel of any quadratic homogeneous derivation d:k[x,y,z] → k[x,y,z] of the form d = x ( C y + z ) x + y ( A z + x ) y + z ( B x + y ) z , called the Lotka-Volterra derivation, where A,B,C ∈ k.

Reduction of differential equations

Krystyna Skórnik, Joseph Wloka (2000)

Banach Center Publications

Let (F,D) be a differential field with the subfield of constants C (c ∈ C iff Dc=0). We consider linear differential equations (1) L y = D n y + a n - 1 D n - 1 y + . . . + a 0 y = 0 , where a 0 , . . . , a n F , and the solution y is in F or in some extension E of F (E ⊇ F). There always exists a (minimal, unique) extension E of F, where Ly=0 has a full system y 1 , . . . , y n of linearly independent (over C) solutions; it is called the Picard-Vessiot extension of F E = PV(F,Ly=0). The Galois group G(E|F) of an extension field E ⊇ F consists of all differential automorphisms of...

Riccati equations.

Williams, Lloyd K. (1987)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 121 – 140 of 203