Asymptotische Formeln für die Lösungnen der Differentialgleichung
We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana...
In this article we investigate the question [of] how meromorphic differential equations can be simplified by meromorphic equivalence. In the case of equations of block size 1, which generalizes the case of distinct eigenvalues, we identify a class of equations which are simplest possible in the sense that they carry the smallest number of parameters whithin their equivalence classes. We also discuss conditions under which individual equations can be simplified. Particular attention is paid to the...
Let L(y) = 0 be a linear differential equation with rational functions as coefficients. To solve L(y) = 0 it is very helpful if the problem could be reduced to solving linear differential equations of lower order. One way is to compute a factorization of L, if L is reducible. Another way is to see if an operator L of order greater than 2 is a symmetric power of a second order operator. Maple contains implementations for both of these. The next step would be to see if L is a symmetric product of...