Displaying 41 – 60 of 83

Showing per page

On those ordinary differential equations that are solved exactly by the improved Euler method

Hans Jakob Rivertz (2013)

Archivum Mathematicum

As a numerical method for solving ordinary differential equations y ' = f ( x , y ) , the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for f ( x , y ) to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method....

Réversibilité et classification des centres nilpotents

Michel Berthier, Robert Moussu (1994)

Annales de l'institut Fourier

Nous considérons un germe ω de 1-forme analytique dans 2 , 0 dont le 1-jet est y d y . Nous montrons que si l’équation ω = 0 définit un centre (i.e toutes les courbes solutions sont des cycles) il existe une involution analytique de 2 , 0 préservant le portrait de phase du système. Géométriquement ceci signifie que les centres analytiques nilpotents sont obtenus par image réciproque par des applications pli. Un théorème de conjugaison équivariante permet d’obtenir une classification complète de ces centres.

Substitution method for generalized linear differential equations

Dana Fraňková (1991)

Mathematica Bohemica

The generalized linear differential equation d x = d [ a ( t ) ] x + d f where A , f B V n l o c ( J ) and the matrices I - Δ - A ( t ) , I + Δ + A ( t ) are regular, can be transformed d y d s = B ( s ) y + g ( s ) using the notion of a logarithimc prolongation along an increasing function. This method enables to derive various results about generalized LDE from the well-known properties of ordinary LDE. As an example, the variational stability of the generalized LDE is investigated.

Symmetries and solvability of linear differential equations.

Luis Joaquín Boya, F. González-Gascón (1980)

Revista Matemática Hispanoamericana

The canonical form theorem, applied to a certain group of symmetry transformations of certain Fuchsian equations, leads automatically to the integration of them. The result can be extended to any n-order differential equation possesing a certain pointlike group of symmetries with a maximal abelian Lie-subgroup of order c.

Currently displaying 41 – 60 of 83