Periodic boundary value problem for nonlinear first order ordinary differential equations with impulses at fixed moments.
We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of . We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.
This paper concerns the following system of nonlinear third-order boundary value problem: with the following multi-point and integral boundary conditions: where , , and are continuous functions for all and . Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.