Existence of multiple positive solutions of higher order multi-point nonhomogeneous boundary value problem.
The paper deals with the existence of multiple positive solutions for the boundary value problem where is an increasing homeomorphism and a positive homomorphism with . Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.
In this paper, we are concerned with the existence of one-signed solutions of four-point boundary value problems and where , is a constant and is a parameter, , with for . The proof of the main results is based upon bifurcation techniques.
We give conditions which guarantee the existence of positive solutions for a variety of arbitrary order boundary value problems for which all boundary conditions involve functionals, using the well-known Krasnosel'skiĭ fixed point theorem. The conditions presented here deal with a variety of problems, which correspond to various functionals, in a uniform way. The applicability of the results obtained is demonstrated by a numerical application.
This paper investigates the existence of positive solutions for a fourth-order differential system using a fixed point theorem of cone expansion and compression type.
The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.
We study the existence of positive solutions of the nonlinear fourth order problem , u(0) = u’(0) = u”(1) = u”’(1) = 0, where a: [0,1] → ℝ may change sign, f(0) < 0, and λ < 0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.