Singular boundary value problem on infinite time scale.
The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form
This work is devoted to the existence of solutions for a class of singular third-order boundary value problem associated with a -Laplacian operator and posed on the positive half-line; the nonlinearity also depends on the first derivative. The upper and lower solution method combined with the fixed point theory guarantee the existence of positive solutions when the nonlinearity is monotonic with respect to its arguments and may have a space singularity; however no Nagumo type condition is assumed....
In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.
In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.
This paper is concerned with the existence of bounded or unbounded solutions to third-order boundary value problem on the half-line with functional boundary conditions. The arguments are based on the Green functions, a Nagumo condition, Schauder fixed point theorem and lower and upper solutions method. An application to a Falkner-Skan equation with functional boundary conditions is given to illustrate our results.