Limit behavior of solutions of ordinary linear differential equations.
We study planar polynomial differential equations with homogeneous components. This kind of equations present a simple and well known dynamics when the degrees (n and m) of both components coincide. Here we consider the case and we show that the dynamics is more complicated. In fact, we prove that such systems can exhibit periodic orbits only when nm is odd. Furthermore, for nm odd we give examples of such differential equations with at least (n+m)/2 limit cycles.
The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.
This paper deals with the following question: does the asymptotic stability of the positive equilibrium of the Holling-Tanner model imply it is also globally stable? We will show that the answer to this question is negative. The main tool we use is the computation of Poincaré-Lyapunov constants in case a weak focus occurs. In this way we are able to construct an example with two limit cycles.
We prove that in quadratic perturbations of generic Hamiltonian vector fields with two saddle points and one center there can appear at most two limit cycles. This bound is exact.
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.We consider a nonlinear model of a continuously stirred bioreactor and study the stability of the equilibrium points with respect to practically important model parameters. We determine regions in the parameter space where the steady states undergo transcritical and Hopf bifurcations. In the latter case, the stability of the emerged limit cycles is also studied. Numerical simulations in the computer algebra...