Factoring linear differential operators on measure chains.
The paper deals with the quasi-linear ordinary differential equation with . We treat the case when is not necessarily monotone in its second argument and assume usual conditions on and . We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta...
Consider the third order nonlinear dynamic equation , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation , where α ≥ -1, γ > 0, c > 3, is oscillatory.
In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.
Suppose that the function in the differential equation (1) is decreasing on where . We give conditions on which ensure that (1) has a pair of solutions such that the -th derivative () of the function has the sign for sufficiently large and that the higher differences of a sequence related to the zeros of solutions of (1) are ultimately regular in sign.