The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 58 of 58

Showing per page

Oscillation of a higher order neutral differential equation with a sub-linear delay term and positive and negative coefficients

Julio G. Dix, Dillip Kumar Ghose, Radhanath Rath (2009)

Mathematica Bohemica

We obtain sufficient conditions for every solution of the differential equation [ y ( t ) - p ( t ) y ( r ( t ) ) ] ( n ) + v ( t ) G ( y ( g ( t ) ) ) - u ( t ) H ( y ( h ( t ) ) ) = f ( t ) to oscillate or to tend to zero as t approaches infinity. In particular, we extend the results of Karpuz, Rath and Padhy (2008) to the case when G has sub-linear growth at infinity. Our results also apply to the neutral equation [ y ( t ) - p ( t ) y ( r ( t ) ) ] ( n ) + q ( t ) G ( y ( g ( t ) ) ) = f ( t ) when q ( t ) has sign changes. Both bounded and unbounded solutions are consideted here; thus some known results are expanded.

Oscillation of third order differential equation with damping term

Miroslav Bartušek, Zuzana Došlá (2015)

Czechoslovak Mathematical Journal

We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term x ' ' ' ( t ) + q ( t ) x ' ( t ) + r ( t ) | x | λ ( t ) sgn x ( t ) = 0 , t 0 . We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case λ 1 and if the corresponding second order differential equation h ' ' + q ( t ) h = 0 is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions.

Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator

R.N. Rath, K.C. Panda, S.K. Rath (2022)

Archivum Mathematicum

In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation ( y ( t ) - i = 1 k p i ( t ) y ( r i ( t ) ) ) ( n ) + v ( t ) G ( y ( g ( t ) ) ) - u ( t ) H ( y ( h ( t ) ) ) = f ( t ) oscillates or tends to zero as t , where, n 1 is any positive integer, p i , r i C ( n ) ( [ 0 , ) , )  and p i are bounded for each i = 1 , 2 , , k . Further, f C ( [ 0 , ) , ) , g , h , v , u C ( [ 0 , ) , [ 0 , ) ) , G and H C ( , ) . The functional delays r i ( t ) t , g ( t ) t and h ( t ) t and all of them approach as t . The results hold when u 0 and f ( t ) 0 . This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature.

Oscillatory properties of some classes of nonlinear differential equations

Milan Medveď (1992)

Mathematica Bohemica

A sufficient condition for the nonoscillation of nonlinear systems of differential equations whose left-hand sides are given by n -th order differential operators which are composed of special nonlinear differential operators of the first order is established. Sufficient conditions for the oscillation of systems of two nonlinear second order differential equations are also presented.

Currently displaying 41 – 58 of 58

Previous Page 3