On transformations of self-adjoint linear differential systems and their reciprocals
In this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form tkDαpttkDαxt+rtxt+qtxt=0,t≥t0,t≠tk,xtk+=akx(tk−),tkDαxtk+=bktk−1Dαx(tk−),k=1,2,…. Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.
On étudie les systèmes différentiels singulièrement perturbés de dimension 3 du typeoù , , sont analytiques quelconques. Les travaux antérieurs étudiaient les points réguliers où la surface lente est transverse au champ rapide vertical. C’est le domaine d’application du théorème de Tikhonov. Dans d’autres travaux antérieurs, on étudiait les singularités de certains types : plis et fronces de la surface lente, ainsi que certaines singularités plus compliquées, analogues aux points tournants...
Sufficient conditions are given which guarantee that the linear transformation converting a given linear Hamiltonian system into another system of the same form transforms principal (antiprincipal) solutions into principal (antiprincipal) solutions.
We study the rank–2 distributions satisfying so-called Goursat condition (GC); that is to say, codimension–2 differential systems forming with their derived systems a flag. Firstly, we restate in a clear way the main result of[7] giving preliminary local forms of such systems. Secondly – and this is the main part of the paper – in dimension 7 and 8 we explain which constants in those local forms can be made 0, normalizing the remaining ones to 1. All constructed equivalences are explicit. ...