O периодических решениях систем дифференциальных уравнений второго порядка
The periodic boundary value problem u''(t) = f(t,u(t),u'(t)) with u(0) = u(2π) and u'(0) = u'(2π) is studied using the generalized method of upper and lower solutions, where f is a Carathéodory function satisfying a Nagumo condition. The existence of solutions is obtained under suitable conditions on f. The results improve and generalize the work of M.-X. Wang et al. [5].
Bounds on the spectrum of the Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients in the analysis of many domain decomposition methods. Here we are interested in the analysis of floating clusters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still smaller subdomains glued on primal level in some nodes and/or by some averages. We give the estimates of the regular condition number of the Schur complements...
We prove several results on lower bounds for the periods of periodic solutions of some classes of functional-differential equations in Hilbert and Banach spaces and difference inclusions in Hilbert spaces.
In this paper, by using the topological degree theory for multivalued maps and the method of guiding functions in Hilbert spaces we deal with the existence of periodic oscillations for a class of feedback control systems in Hilbert spaces.