Šarkovského věta a diferenciální rovnice
In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.
Let : be a continuous function, : a function in and let , be given. It is proved that Duffing’s equation , , , in the presence of the damping term has at least one solution provided there exists an such that for and . It is further proved that if is strictly increasing on with , and it Lipschitz continuous with Lipschitz constant , then Duffing’s equation given above has exactly one solution for every .