Šarkovského věta a diferenciální rovnice
Page 1 Next
Ján Andres (2004)
Pokroky matematiky, fyziky a astronomie
Ján Andres (2011)
Pokroky matematiky, fyziky a astronomie
Baek, Hunki, Do, Younghae (2009)
Abstract and Applied Analysis
Bainov, D.D., Stamova, I.M. (1997)
Divulgaciones Matemáticas
F. Neuman (1980)
Annales scientifiques de l'École Normale Supérieure
Aydin Huseynov (2011)
Applications of Mathematics
In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.
Mawhin, Jean (1998)
Proceedings of Equadiff 9
Li, Jing-wen, Wang, Gen-qiang (2005)
Applied Mathematics E-Notes [electronic only]
Polášek, Vladimír, Rachůnková, Irena (2006)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Toni, Bourama (1999)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Milan Stedry (1989)
Annales de l'I.H.P. Analyse non linéaire
Vicente Hernández García, Lucas Jodar Sánchez (1987)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Ján Andres (1987)
Mathematica Slovaca
Antonio Ambrosetti, Giovanni Mancini (1981)
Mathematische Annalen
J. M. Lasry (1982/1983)
Séminaire Équations aux dérivées partielles (Polytechnique)
M.N. Nkashama (1985)
Bulletin de la Société Mathématique de France
Chouikha, A.Raouf (2003)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Chaitan P. Gupta (1993)
Applications of Mathematics
Let : be a continuous function, : a function in and let , be given. It is proved that Duffing’s equation , , , in the presence of the damping term has at least one solution provided there exists an such that for and . It is further proved that if is strictly increasing on with , and it Lipschitz continuous with Lipschitz constant , then Duffing’s equation given above has exactly one solution for every .
Gupta, Chaitan P. (1988)
International Journal of Mathematics and Mathematical Sciences
Gupta, Chaitan P. (1991)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next