Page 1

Displaying 1 – 15 of 15

Showing per page

Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel

M. Neamţu, L. Buliga, F. R. Horhat, D. Opriş (2010)

Mathematical Modelling of Natural Phenomena

The aim of this paper is to study the steady states of the mathematical models with delay kernels which describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of infectious diseases it is important to predict whether the infection disappears or the pathogens persist. The delay kernel is described by the memory function that reflects the influence of the past density of pathogen in the blood and it is given by a nonnegative bounded and normated function k defined...

Hopf bifurcations in a three-species food chain system with multiple delays

Xiaoliang Xie, Wen Zhang (2017)

Open Mathematics

This paper is concerned with a three-species Lotka-Volterra food chain system with multiple delays. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the stability of the positive equilibrium and existence of Hopf bifurcations are investigated. Furthermore, the direction of bifurcations and the stability of bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations....

Hoptf bifurcation from infinity for planar control systems.

Jaume Llibre, Enrique Ponce (1997)

Publicacions Matemàtiques

Symmetric piecewise linear bi-dimensional systems are very common in control engineering. They constitute a class of non-differentiable vector fields for which classical Hopf bifurcation theorems are not applicable. For such systems, sufficient and necessary conditions for bifurcation of a limit cycle from the periodic orbit at infinity are given.

Currently displaying 1 – 15 of 15

Page 1