Displaying 101 – 120 of 966

Showing per page

Applications of the Carathéodory theorem to PDEs

Konstanty Holly, Joanna Orewczyk (2000)

Annales Polonici Mathematici

We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE ( * ) = ( t , x ) for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases “dom ℱ is open” and “dom ℱ = ℐ × Ω for some Ω ⊂ X”. We show how to use the theorems mentioned above to get approximate...

Approximate solution of an inhomogeneous abstract differential equation

Emil Vitásek (2012)

Applications of Mathematics

Recently, we have developed the necessary and sufficient conditions under which a rational function F ( h A ) approximates the semigroup of operators exp ( t A ) generated by an infinitesimal operator A . The present paper extends these results to an inhomogeneous equation u ' ( t ) = A u ( t ) + f ( t ) .

Approximate solutions for integrodifferential equations of the neutral type

B. G. Pachpatte (2010)

Commentationes Mathematicae Universitatis Carolinae

The main objective of the present paper is to study the approximate solutions for integrodifferential equations of the neutral type with given initial condition. A variant of a certain fundamental integral inequality with explicit estimate is used to establish the results. The discrete analogues of the main results are also given.

Approximate solutions of abstract differential equations

Emil Vitásek (2007)

Applications of Mathematics

The methods of arbitrarily high orders of accuracy for the solution of an abstract ordinary differential equation are studied. The right-hand side of the differential equation under investigation contains an unbounded operator which is an infinitesimal generator of a strongly continuous semigroup of operators. Necessary and sufficient conditions are found for a rational function to approximate the given semigroup with high accuracy.

Approximate weak invariance for semilinear differential inclusions in Banach spaces

Alina Lazu, Victor Postolache (2011)

Open Mathematics

In this paper we give a criterion for a given set K in Banach space to be approximately weakly invariant with respect to the differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A generates a C 0-semigroup and F is a given multi-function, using the concept of a tangent set to another set. As an application, we establish the relation between approximate solutions to the considered differential inclusion and solutions to the relaxed one, i.e., x′(t) ∈ Ax(t) + c o ¯ F(x(t)), without any Lipschitz conditions...

Approximation theorem for evolution operators

Rinka Azuma (2003)

Studia Mathematica

This paper is devoted to the study of the approximation problem for the abstract hyperbolic differential equation u'(t) = A(t)u(t) for t ∈ [0,T], where A(t):t ∈ [0,T] is a family of closed linear operators, without assuming the density of their domains.

Approximations and error bounds for computing the inverse mapping

Lucas Jódar, Enrique Ponsoda, G. Rodríguez Sánchez (1997)

Applications of Mathematics

In this paper we propose a procedure to construct approximations of the inverse of a class of 𝒞 m differentiable mappings. First of all we determine in terms of the data a neighbourhood where the inverse mapping is well defined. Then it is proved that the theoretical inverse can be expressed in terms of the solution of a differential equation depending on parameters. Finally, using one-step matrix methods we construct approximate inverse mappings of a prescribed accuracy.

Currently displaying 101 – 120 of 966