Solvability and the unique solvability of a periodic type boundary value problem for first order scalar functional differential equations.
Nonimprovable sufficient conditions for the solvability and unique solvability of the problem are established, where is a continuous operator satisfying the Carathèodory conditions, is a continuous functional, and .
Using the topological transversality method of Granas we prove an existence result for a system of differential inclusions with retardations of the form y'' ∈ F(t,y,y',Φ(y)). The result is applied to the study of the existence of solutions to an equation of the trajectory of an r-stage rocket with retardations.
The a priori boundedness principle is proved for the Dirichlet boundary value problems for strongly singular higher-order nonlinear functional-differential equations. Several sufficient conditions of solvability of the Dirichlet problem under consideration are derived from the a priori boundedness principle. The proof of the a priori boundedness principle is based on the Agarwal-Kiguradze type theorems, which guarantee the existence of the Fredholm property for strongly singular higher-order linear...
We consider a boundary value problem for a differential equation with deviating arguments and p-Laplacian: , x’(t), x’(τ(t))) = 0, t ∈ [0,1]; t ≤ 0; , t ≥ 1. An existence result is obtained with the help of the Leray-Schauder degree theory, with no restriction on the damping forces d/dt grad F(x).
A numerical method for the solution of a second order boundary value problem for differential equation with state dependent deviating argument is studied. Second-order convergence is established and a theorem about the asymptotic expansion of global discretization error is given. This theorem makes it possible to improve the accuracy of the numerical solution by using Richardson extrapolation which results in a convergent method of order three. This is in contrast to boundary value problems for...
In this paper, we are concerned with the existence of traveling waves in a class of delayed higher dimensional lattice differential systems with competitive interactions. Due to the lack of quasimonotonicity for reaction terms, we use the cross iterative and Schauder's fixed-point theorem to prove the existence of traveling wave solutions. We apply our results to delayed higher-dimensional lattice reaction-diffusion competitive system.