Page 1

Displaying 1 – 11 of 11

Showing per page

Immunological barrier for infectious diseases

I. Barradas (1997)

Applicationes Mathematicae

A nonlinear mathematical model with distributed delay is proposed to describe the reaction of a human organism to a pathogen agent. The stability of the disease free state is analyzed, showing that there exists a large set of initial conditions in the attraction basin of the disease-free state whose border is defined as the immunological barrier.

Impulsive stabilization of high-order nonlinear retarded differential equations

Juan Liu, Xiaodi Li (2013)

Applications of Mathematics

In this paper, impulsive stabilization of high-order nonlinear retarded differential equations is investigated by using Lyapunov functions and some analysis methods. Our results show that several non-impulsive unstable systems can be stabilized by imposition of impulsive controls. Some recent results are extended and improved. An example is given to demonstrate the effectiveness of the proposed control and stabilization methods.

Indecision in Neural Decision Making Models

J. Milton, P. Naik, C. Chan, S. A. Campbell (2010)

Mathematical Modelling of Natural Phenomena

Computational models for human decision making are typically based on the properties of bistable dynamical systems where each attractor represents a different decision. A limitation of these models is that they do not readily account for the fragilities of human decision making, such as “choking under pressure”, indecisiveness and the role of past experiences on current decision making. Here we examine the dynamics of a model of two interacting neural populations with mutual time–delayed inhibition....

Influence of time delays on the Hahnfeldt et al. angiogenesis model dynamics

Marek Bodnar, Urszula Foryś (2009)

Applicationes Mathematicae

We study the influence of time delays on the dynamics of the general Hahnfeldt et al. model of an angiogenesis process. We analyse the dynamics of the system for different values of the parameter α which reflects the strength of stimulation of the vessel formation process. Time delays are introduced in three subprocesses: tumour growth, stimulation and inhibition of vessel formation (represented by endothelial cell dynamics). We focus on possible destabilisation of the positive steady state due...

Involutions of real intervals

Gaetano Zampieri (2014)

Annales Polonici Mathematici

This paper shows a simple construction of continuous involutions of real intervals in terms of continuous even functions. We also study smooth involutions defined by symmetric equations. Finally, we review some applications, in particular a characterization of isochronous potentials by means of smooth involutions.

Currently displaying 1 – 11 of 11

Page 1