Page 1 Next

Displaying 1 – 20 of 56

Showing per page

Some notes to existence and stability of the positive periodic solutions for a delayed nonlinear differential equations

Božena Dorociaková, Rudolf Olach (2016)

Open Mathematics

The paper deals with the existence of positive ω-periodic solutions for a class of nonlinear delay differential equations. For example, such equations represent the model for the survival of red blood cells in an animal. The sufficient conditions for the exponential stability of positive ω-periodic solution are also considered.

Stability analysis for neutral stochastic systems with mixed delays

Huabin Chen, Peng Hu (2013)

Kybernetika

This paper is concerned with the problem of the exponential stability in mean square moment for neutral stochastic systems with mixed delays, which are composed of the retarded one and the neutral one, respectively. Based on an integral inequality, a delay-dependent stability criterion for such systems is obtained in terms of linear matrix inequality (LMI) to ensure a large upper bounds of the neutral delay and the retarded delay by dividing the neutral delay interval into multiple segments. A new...

Stability analysis of the five-dimensional energy demand-supply system

Kun-Yi Yang, Chun Xia An (2021)

Kybernetika

In this paper, a five-dimensional energy demand-supply system has been considered. On the one hand, we analyze the stability for all of the equilibrium points of the system. For each of equilibrium point, by analyzing the characteristic equation, we show the conditions for the stability or instability using Routh-Hurwitz criterion. Then numerical simulations have been given to illustrate all of cases for the theoretical results. On the other hand, by introducing the phenomenon of time delay, we...

Stability and Boundedness of Solutions of Some Third-order Nonlinear Vector Delay Differential Equation

Larbi Fatmi, Moussadek Remili (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper investigates the stability of the zero solution and uniformly boundedness and uniformly ultimately boundedness of all solutions of a certain vector differential equation of the third order with delay. Using the Lyapunov–Krasovskiĭ functional approach, we obtain a new result on the topic and give an example for the related illustrations.

Stability and Boundednessof the Solutions of Non Autonomous Third Order Differential Equations with Delay

Moussadek Remili, Lynda Damerdji Oudjedi (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this article, we shall establish sufficient conditions for the asymptotic stability and boundedness of solutions of a certain third order nonlinear non-autonomous delay differential equation, by using a Lyapunov function as basic tool. In doing so we extend some existing results. Examples are given to illustrate our results.

Stability and gradient dynamical systems.

Jack K. Hale (2004)

Revista Matemática Complutense

The objective in these notes is to present an approach to dynamical systems in infinite dimensions. It does not seem reasonable to make a comparison of all of the orbits of the dynamics of two systems on non locally compact infinite dimensional spaces. Therefore, we choose to compare them on the set of globally defined bounded solutions. Fundamental problems are posed and several important results are stated when this set is compact. We then give results on the dynamical system which will ensure...

Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays

Changjin Xu, Maoxin Liao, Xiaofei He (2011)

International Journal of Applied Mathematics and Computer Science

In this paper, a two-species Lotka-Volterra predator-prey model with two delays is considered. By analyzing the associated characteristic transcendental equation, the linear stability of the positive equilibrium is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and direction of Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical simulations...

Currently displaying 1 – 20 of 56

Page 1 Next