Effect of time delay on a detritus-based ecosystem.
In this paper, a class of non-autonomous delayed competitive systems with the effect of toxic substances and impulses is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantees the existence of at least one positive periodic solution, and by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are established.
The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.
Our paper deals with the following nonlinear neutral differential equation with variable delay By using Krasnoselskii’s fixed point theorem we obtain the existence of periodic solution and by contraction mapping principle we obtain the uniqueness. A sufficient condition is established for the positivity of the above equation. Stability results of this equation are analyzed. Our results extend and complement some results obtained in the work [Yuan, Y., Guo, Z.: On the existence and stability of...
The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for , , , and to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...
We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the mapping fits...