Marachkov type stability results for functional differential equations.
In this paper we consider a dynamic model for flow induced vibration of pipelines. We study the questions of existence and uniqueness of solutions of the system. Considering the flow rate as the control variable, we present three different necessary conditions of optimality. The last one with state constraint involves Differential Inclusions. The paper is concluded with an algorithm for computing the optimal controls.
We present and compare two simple models of immune system and cancer cell interactions. The first model reflects simple cancer disease progression and serves as our "control" case. The second describes the progression of a cancer disease in the case of a patient infected with the HIV-1 virus.
We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...