Integro-differential equations on time scales with Henstock-Kurzweil delta integrals
In this paper we prove existence theorems for integro - differential equations , t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊, x(0) = x₀ where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral. Additionally, functions f and k satisfy some boundary conditions and conditions...