Positive periodic solutions for nonautonomous impulsive neutral functional differential systems with time-varying delays on time scales.
We present a result on the stability of moving invariant manifolds of nonlinear uncertain impulsive differential-difference equations. The result is obtained by means of piecewise continuous Lyapunov functions and a comparison principle.
By using the well-known Leggett–Williams multiple fixed point theorem for cones, some new criteria are established for the existence of three positive periodic solutions for a class of n-dimensional functional differential equations with impulses of the form ⎧y’(t) = A(t)y(t) + g(t,yt), , j ∈ ℤ, ⎨ ⎩, where is a nonsingular matrix with continuous real-valued entries.