Forced oscillation of second-order half-linear dynamic equations on time scales.
In this paper, we establish sufficient conditions for the existence of mild solutions for fractional integro-differential inclusions with state-dependent delay. The techniques rely on fractional calculus, multivalued mapping on a bounded set and Bohnenblust-Karlin's fixed point theorem. Finally, we present an example to illustrate the theory.
The error analysis of preconditioned waveform relaxation iterations for differential systems is presented. This analysis extends and refines previous results by Burrage, Jackiewicz, Nørsett and Renaut by incorporating all terms in the expansion of the error of waveform relaxation iterations in the Laplace transform domain. Lower bounds for the size of the window of rapid convergence are also obtained. The theory is illustrated for waveform relaxation methods applied to differential systems resulting...
The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.
Classical solutions of functional partial differential inequalities with initial boundary conditions are estimated by maximal solutions of suitable problems for ordinary functional differential equations. Uniqueness of solutions and continuous dependence on given functions are obtained as applications of the comparison result. A theorem on weak functional differential inequalities generated by mixed problems is proved. Our method is based on an axiomatic approach to equations with unbounded delay....