Numerical Solution of Retarded Initial Value Problems: Local and Global Error and Stepsize Control.
This article is concerned with a boundary value problem on the half-line for nonlinear two-dimensional delay differential systems. By the use of the Schauder-Tikhonov theorem, a result on the existence of solutions is obtained. Also, via the Banach contraction principle, another result concerning the existence and uniqueness of solutions is established. Moreover, these results are applied to the special case of ordinary differential systems and to a certain class of delay differential systems. Furthermore,...
The Leray-Schauder degree theory is used to obtain sufficient conditions for the existence and uniqueness of solutions for the boundary value problem x'' = f(t,x,x',x'',λ), α(x) = 0, β(x̅) = 0, γ(x̿)=0, depending on the parameter λ. Here α, β, γ are linear bounded functionals defined on the Banach space of C⁰-functions on [0,1] and x̅(t) = x(0) - x(t), x̿(t)=x(1)-x(t).