Displaying 81 – 100 of 461

Showing per page

On global transformations of functional-differential equations of the first order

Václav Tryhuk (2000)

Czechoslovak Mathematical Journal

The paper describes the general form of functional-differential equations of the first order with m ( m 1 ) delays which allows nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation f ( t , u v , u 1 v 1 , ... , u m v m ) = f ( x , v , v 1 , ... , v m ) g ( t , x , u , u 1 , ... , u m ) u + h ( t , x , u , u 1 , ... , u m ) v for u 0 is solved on and a method of proof by J. Aczél is applied.

On Ishlinskij's model for non-perfectly elastic bodies

Pavel Krejčí (1988)

Aplikace matematiky

The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator F , which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation u ' ' + F ( u ) = 0 describing the motion of a mass point at the extremity of an elastico-plastic spring.

On noncompact perturbation of nonconvex sweeping process

Myelkebir Aitalioubrahim (2012)

Commentationes Mathematicae Universitatis Carolinae

We prove a theorem on the existence of solutions of a first order functional differential inclusion governed by a class of nonconvex sweeping process with a noncompact perturbation.

On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay

S. Ruan (2009)

Mathematical Modelling of Natural Phenomena

In this survey, we briefly review some of our recent studies on predator-prey models with discrete delay. We first study the distribution of zeros of a second degree transcendental polynomial. Then we apply the general results on the distribution of zeros of the second degree transcendental polynomial to various predator-prey models with discrete delay, including Kolmogorov-type predator-prey models, generalized Gause-type predator-prey models with harvesting, etc. Bogdanov-Takens bifurcations...

Currently displaying 81 – 100 of 461