Displaying 1001 – 1020 of 1832

Showing per page

On oscillation of solutions of forced nonlinear neutral differential equations of higher order II

N. Parhi, R. N. Rath (2003)

Annales Polonici Mathematici

Sufficient conditions are obtained so that every solution of [ y ( t ) - p ( t ) y ( t - τ ) ] ( n ) + Q ( t ) G ( y ( t - σ ) ) = f ( t ) where n ≥ 2, p,f ∈ C([0,∞),ℝ), Q ∈ C([0,∞),[0,∞)), G ∈ C(ℝ,ℝ), τ > 0 and σ ≥ 0, oscillates or tends to zero as t . Various ranges of p(t) are considered. In order to accommodate sublinear cases, it is assumed that 0 Q ( t ) d t = . Through examples it is shown that if the condition on Q is weakened, then there are sublinear equations whose solutions tend to ±∞ as t → ∞.

On oscillation of solutions of forced nonlinear neutral differential equations of higher order

N. Parhi, Radhanath N. Rath (2003)

Czechoslovak Mathematical Journal

In this paper, necessary and sufficient conditions are obtained for every bounded solution of [ y ( t ) - p ( t ) y ( t - τ ) ] ( n ) + Q ( t ) G y ( t - σ ) = f ( t ) , t 0 , ( * ) to oscillate or tend to zero as t for different ranges of p ( t ) . It is shown, under some stronger conditions, that every solution of ( * ) oscillates or tends to zero as t . Our results hold for linear, a class of superlinear and other nonlinear equations and answer a conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and generalize some known results.

On periodic solutions of systems of linear functional-differential equations

Ivan Kiguradze, Bedřich Půža (1997)

Archivum Mathematicum

This paper deals with the system of functional-differential equations d x ( t ) d t = p ( x ) ( t ) + q ( t ) , where p : C ω ( R n ) L ω ( R n ) is a linear bounded operator, q L ω ( R n ) , ω > 0 and C ω ( R n ) and L ω ( R n ) are spaces of n -dimensional ω -periodic vector functions with continuous and integrable on [ 0 , ω ] components, respectively. Conditions which guarantee the existence of a unique ω -periodic solution and continuous dependence of that solution on the right hand side of the system considered are established.

Currently displaying 1001 – 1020 of 1832