O локализации собственных чисел одной спектральной задачи.
Page 1 Next
Т.И. Зеленяк (1989)
Sibirskij matematiceskij zurnal
Vladimír Vlček (1981)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Miloš Háčik (1972)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Zagorodniuk, S. (1998)
Serdica Mathematical Journal
∗ Partially supported by Grant MM-428/94 of MESC.Systems of orthogonal polynomials on the real line play an important role in the theory of special functions [1]. They find applications in numerous problems of mathematical physics and classical analysis. It is known, that classical polynomials have a number of properties, which uniquely define them.
Naylor, D. (1984)
International Journal of Mathematics and Mathematical Sciences
Naylor, D. (1984)
International Journal of Mathematics and Mathematical Sciences
Harold Exton (1992)
Collectanea Mathematica
Shu Nakamura (1995)
Annales de l'I.H.P. Physique théorique
Mamedov, Khanlar R. (2010)
Boundary Value Problems [electronic only]
Mitrea, Marius (1999)
Electronic Research Announcements of the American Mathematical Society [electronic only]
A. Benedek, R. Panzone (1973)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Sergey Labovskiy, Mário Frengue Getimane (2014)
Mathematica Bohemica
We study conditions of discreteness of spectrum of the functional-differential operator on . In the absence of the integral term this operator is a one-dimensional Schrödinger operator. In this paper we consider a symmetric operator with real spectrum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated operator. We also obtain one simple condition for discreteness of spectrum.
R. Mennicken, M. Möller, H. Langer (1992)
Journal für die reine und angewandte Mathematik
Karaca, Ilkay Yaslan (2003)
International Journal of Mathematics and Mathematical Sciences
Denche, M. (1999)
Journal of Applied Mathematics and Stochastic Analysis
Ma, Ruyun, Luo, Hua, Gao, Chenghua (2008)
Advances in Difference Equations [electronic only]
T. Levitina (1994)
Banach Center Publications
The method proposed here has been devised for solution of the spectral problem for the Lamé wave equation (see [2]), but extended lately to more general problems. This method is based on the phase function concept or the Prüfer angle determined by the Prüfer transformation cotθ(x) = y'(x)/y(x), where y(x) is a solution of a second order self-adjoint o.d.e. The Prüfer angle θ(x) has some useful properties very often being referred to in theoretical research concerning both single- and multi-parameter...
Weikard, R. (1999)
Documenta Mathematica
Poulkou, Anthippi (2004)
Abstract and Applied Analysis
Bernd Dreseler, Walter Schempp (1979)
Banach Center Publications
Page 1 Next